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NASA NCC2-1399 

Applications of Principled Search Methods in Climate Influences 

and Mechanisms 

Statistical Forecasts of Wildfire 

Introduction 

Forest and grass fires cause economic losses in the billions of dollars in the U.S. alone 
[ 141. In addition, boreal forests constitute a large carbon store; it has been estimated that, 
were no burning to occur, an additional 7 gigatons of carbon would be sequestered in 
boreal soils each century [lo]. Effective wildfire suppression requires anticipation of 
locales and times for which wildfire is most probable, preferably with a two to four week 
forecast [13], so that limited resources can be efficiently deployed. The United States 
Forest Service (USFS), and other experts and agencies have developed several measures of 
fire risk combining physical principles and expert judgment [ I  1, 121, and have used them 
in automated procedures for forecasting fire risk. Forecasting accuracies for some fire risk 
indices in combination with climate and other variables have been estimated for specific 
locations [1,8], with the value of fire risk index variables assessed by their statistical 
significance in regressions. In other cases, the MAPSS forecasts [23, 241 for example, 
forecasting accuracy has been estimated only by simulated data. 

We describe alternative forecasting methods that predict fire probability by locale and 
time using statistical or machine learning procedures trained on historical data, and we give 
comparative assessments of their forecasting accuracy for one fire season year, April- 
October, 2003, for all U.S. Forest Service lands. Aside from providing an accuracy 
baseline for other forecasting methods, the results illustrate the interdependence between 
the statistical significance of prediction variables and the forecasting method used. 

Data 

The Terrestrial Observation and Prediction System (TOPS) [5,6] provides measures of 
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the following variables for years 2000-2003 for the lower 48 states gridded to 8km 
(approximately 15,8 14 acres) resolution using a Lambert equal-area projection (Figure 1 
and Figure 2): 

FPAR (Fraction of Photosynthetically Active Radiation absorbed by vegetation) 
LA1 (Leaf Area Index) 
TMIN (Minimum temperature over past 24 hours) 
TMAX (Maximum temperature over past 24 hours) 
PRECIP (Amount of precipitation, rain or snow, over past 24 hours) 
VPD (Vapor Pressure Deficit; an inverse function of humidity) 

FPAR and LA1 measures are collected every 8 days from NASA MODIS satellites [15]. 
The remaining variables are produced daily from ground observations collected by the 
National Climate Data Center (NCDC). 

Fire forecasting models have been designed to predict number of fire days [l], or 
probability of at least one fire [SI, or burned area [7], or fire “risk,” the last a quantity 
that is not independently measurable and hence not amenable to an assessment of forecast 
accuracy. We estimate the probability of at least one fire in any 30 day period in the fire 
season within a 64 square kilometer grid cell. The National Tnteragency Fire Management 
Integrated Database (NIFMID) provides records of fires occurring on USFS land that 
required suppressive action for the years 1986-2003 [4], including fire location, ignition 
date and final fire size. In nearly all cases (99.9%), a fire lies entirely within the boundary 
of a single grid cell. 

US Fore51 W e  Lanes  
r 

Figure 1: U.S. Forest Service Land 

The USFS currently uses a map of fuel types (See Figure 2 and Table 1) in their wildfire 
assessment system [3,16] gridded to 1 km resolution. 
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Figure 2 

Table 1 

For each year Y in 2000-2003, and each day-of-year T in 1-365 (except 2000, which 
begins on day-of-year 65), and each 64 sq. km. grid cell, values for the following variables 
were assigned: 
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FPAR on day T, year Y 
LA1 on day T, year Y 

TMIN on day T, year Y 
TMAX on day T, year Y 
PRECIP on day T, year Y 
VPD on day T, year Y 

Th4PJ averaged over [T- 1 ,T-7], year Y 

TMAX averaged over [T-l,T-7], year Y 
PRECIP averaged over [T- 1 ,T-71, year Y 
VPD averaged over [T- 1,T-7], year Y 
TMIN averaged over [T- 1 ,T-30], year Y 
TMAX averaged over [T-1,T-301, year Y 
PRECIP averaged over [T-l,T-30], year Y 
VPD averaged over [T-1,T-301, year Y 
Number of fires in calendar year Y-1 
Number of fires in calendar years [Y-2, Y- 151 

All variables were standardized to zero mean and unit variance. 

A Theremal Anomaly MODIS product is available which, if used in place of U.S. Forest 
Service fire records, would allow forecasting for the entire United State. The Thermal 
Anomaly product is very recent, however, and would not provide a substitute for number 
of fires years in calendar years, Y-2, Y - 15, a variable that proved to be significant. 

Classifiers and Training 

Three algorithms were trained: logistic regression [9], classification and regression trees 
[25], and support vector machines [22] with a radial basis kernel. All programs were 
coded using MATLAB libraries REF. In each case, training was with the 2000-2002 
measures above. Logistic regression parameters were obtained with the Matlab Statistics 
Toolbox implementation, which performs 100 iterations of conjugate gradient search. 
Classification and regression parameters were obtained with the Matlab Statistics 
Tool box implementation using the Gini measure and ten-fold cross-validation over ROC 
curve areas was used to prune the tree. Support vector machine tuning used default 
settings for LIBSVM 2.8. Supervision targets were scored as 1 if fire occurred within the 
succeeding 30 days, and 0 otherwise. Separate models from each classifier were trained for 
each month (e.g., March, April, May, ...) and for each fuel code. It is useful to know if 
recent weather events are on average important to forecast accuracy, or, alternatively, if 
the burn history for a place and day of year are accurate for a succeeding year. 
Accordingly, we also produced models that used burn history variables only as inputs. 

Testing Method 

Each classifier was used to assign a fire occurrence probability to each grid cell in USFS 
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lands for the 30-day period following the 15* day of each month from March through 
October of 2003. The NIFMID data for 2003 were then use to obtain ROC (Receiver 
Operating Characteristic) curves [ 181 for each fuel code, month and forecasting method. 
Areas under ROC curves (AUC) were calculated for each case. Maps of the resulting 
probabilities produced by one of the algorithms (logistic regression), and the actual fire 
occurrences, for April and July of 2003, are shown in Figure 3. 

Results 

The ROC curves for all forecasting methods, fuel codes and months for which at least 10 
fires occur are shown in Appendix 1. Area under the curve (AUC) and number of acres 
burned are given in the legend for each figure. Tables 1-3 in Appendix 2 compare AUC 
values, fuel code by fuel code, with (top value) and without (bottom value) climate 
variables, for each of the 3 forecasting methods. Empty cells are for fuelcode months with 
fewer than 10 fires. Fuelcodes omitted altogether had fewer than 10 fires in any month. 
Cells where the AUC values differ significantly (p  < 0.05 for a two-sided test) are 
highlighted in green, using Hanley’s test [17, 181. 

Tables 4-6 report all painvise comparisons of the three classifier methods for each 
fuelcode month using both climate and burn history variables. Again, cells are left blank 
for fuelcode-months fewer than 10 fires. Cells are highlighted green if the first method 
significantly outperforms the second method, and they are highlighted magenta if the 
second method significantly outperforms the first. The same test and criterion for 
significance were used in these tables as those in Tables 1-3. 
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Discuss ion 

The forecasting models tend to differ significantly in fuelcode-months with many fires. 
While climate variables are significant when support vector machine and CART classifiers 
are used, those variables are not significant when forecasting is with logistic regression, 
and on the whole, classification with logistic regression is substantially more accurate. 
Place is an effective proxy for many climate variables, and it may be that when 
associations of burn history and place are optimally exploited, on average climate 
variables are nearly independent of wildfire occurrence. 

Several alternative explanations of our results are possible, but establishing any of them 
would require further extensive studies. The fire data we used in our study covers about 
10% of the area of the lower 48 states, and different results might be obtained with fire 
data from a larger area; the MODIS Thermal Anomalies product is one possibility, 
although some problems with validation have been reported [ 19, 201. Again, the value of 
climate variables for fire forecasts might be found in other studies, perhaps using other 
outcome criteria, such as acres burned or number of fire days rather than occurrence of at 
least one fire, but our results argue that such studies should consider multiple 
classification methods. 

Except for precipitation, MODIS products that might serve in place of TOPS ground 
measured variables are presently available. Should the sufficiency of burn history for 
wildfire forecasting A MODIS burn product is recently available REF, which, over time, 
may permit global wildfire forecasting from burn history Model training on a planetary 
scale is confounded by agricultural burnings, but these are typically either small fires or, 
when large, fires of known origin. With parallelization, and appropriate data, wildfire 
forecasts for all boreal forests, or for the entire Earth landmass, are computationally 
feasible. 
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Appendix 1 : ROC curves 

Fuel Code B: California Mixed Chaparral (logit method) 

Fuel Code C: Pine Grass Savanna (logit method) 

Fuel Code F: Intermediate Brush (logit method) 
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Fuel Code G: Short Needle Conifers, Heavy Dead Load (logit method) 

Fuel Code L: Western Perennial Grass (logit 
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Fuel Code 0: High Pocosin (logit method) 
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Fuel Code R: Hardwoods (logit method) 

Fuel Code T: Sagebrush-Grass Mixture (logit method) 
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Fuel Code B: California Mixed Chaparral (CART method) 
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Fuel Code C: Pine Grass Savanna (CART method) 

Fuel Code F: Intermediate Brush (CART method) 
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Fuel Code H: Short Needle Conifers, Normal Dead Load (CART method) 
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Fuel Code L: Western Perennial Grass (CART method) 
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Fuel Code 0: High Pocosin (CART method) 

Fuel Code P: Southern Pine Plantation (CART method) 
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Fuel Code R: Hardwoods (CART method) 
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Fuel Code T: Sagebrush-Grass Mixture (CART method) 
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Fuel Code B: California Mixed Chaparral (SVM method) 

Fuel Code C: Pine Grass Savanna (SVM method) 
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Fuel Code F: Intermediate Brush (SVM method) 
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Fuel Code G: Short Needle Conifers, Heavy Dead Load (SVM method) 
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Fuel Code H: Short Needle Conifers, Normal Dead Load (SVM method) 
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Fuel Code L: Western Perennial Grass (SVM method) 
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Fuel Code M: Agricultural Land (SVM method) 
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Fuel Code 0: High Pocosin (SVM method) 

i 

Fuel Code P: Southern Pine Plantation (SVM method) 
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Fuel Code R Hardwoods (SVM method) 
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Fuel Code T: Sagebrush-Grass Mixture (SVM method) 
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Appendix 2 

Table 1: Logistic Regression, All Inputs vs. Logistic Regression, Burn History Inputs 

Table 2: CART, All Inputs vs. CART, Burn History Inputs 



Table 3: SVM, All Inputs vs. SVM, Burn History Inputs 

Table 4: Logistic Regression, All Inputs vs. CART, All Inputs 
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I 1 0.5023 10.5596 1 I I I 1 0.637 1 0.5703 1 

Table 5: Logistic Regression, All Inputs vs. SVM, All Inputs 

Table 6: CART, All Inputs vs. SVM, All Inputs 
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